ON THE JACOBSON'S LEMMA

JANKO BRAČIČ

This note is based on the joint work with Bojan Kuzma, [1].

1. INTRODUCTION

Let \mathfrak{X} be a finite dimensional complex vector space. By $L(\mathfrak{X})$ we denote the algebra of all linear operators on \mathfrak{X} .

For $A, B \in L(\mathcal{X})$, let [A, B] = AB - BA. The Jacobson's Lemma [3] says that [A, B] is a nilpotent operator if A and [A, B] commute, i.e., if [A, [A, B]] = 0. The original proof [3, Lemma 2], and its extension [4], bound the nilindex of [A, B] above by $2^n - 1$, where n is the degree of the minimal polynomial of A. Arguments run as follows.

Denote by $\delta_B := [\cdot, B]$ the inner derivation on $L(\mathfrak{X})$ that is induced by B and rewrite the condition [A, [A, B]] = 0 as $\delta_B(A)A = A\delta_B(A)$. It follows that

$$\delta_B(A^2) = \delta_B(A)A + A\delta_B(A) = 2A\delta_B(A)$$

and consequently, by the induction,

$$\delta_B(A^k) = kA^{k-1}\delta_B(A) \qquad (k \in \mathbb{N}).$$

Thus, $\delta_B(p(A)) = p'(A)\delta_B(A)$, for any polynomial p.

Let $q_A(z)$ be the minimal polynomial of A and let n be its degree. Since $q_A(A) = 0$ we have $q'_A(A)\delta_B(A) = 0$, which is the case k = 1 of

(1)
$$q_A^{(k)}(A)\delta_B(A)^{2^k-1} = 0$$

Assume that (1) holds for some $k \in \mathbb{N}$. Then

$$0 = \delta_B \left(q_A^{(k)}(A) \delta_B(A)^{2^k - 1} \right)$$

= $q_A^{(k+1)}(A) \delta_B(A) \delta_B(A)^{2^k - 1} + q_A^{(k)}(A) \delta_B \left(\delta_B(A)^{2^k - 1} \right)$
= $q_A^{(k+1)}(A) \delta_B(A)^{2^k} + q_A^{(k)}(A) \delta_B^2(A) \delta_B(A)^{2^k - 2} +$
+ $q_A^{(k)}(A) \delta_B(A) \delta_B^2(A) \delta_B(A)^{2^k - 3} + \dots + q_A^{(k)}(A) \delta_B(A)^{2^k - 2} \delta_B^2(A).$

Now, we premultiply this equality with $\delta_B(A)^{2^k-1}$ to get the induction step. Thus, $q_A^{(k)}(A)\delta_B(A)^{2^k-1} = 0$ holds for any $k \in \mathbb{N}$. In particular, for k = n, we have

$$n!\delta_B(A)^{2^n-1} = 0,$$

which means that [A, B] is nilpotent with nilindex at most $2^n - 1$. We remark that if $\delta_B^2(A)$ commutes with $\delta_B(A)$, similar arguments would bound nilindex above by 2n - 1.

In this note we shall improve the estimate on the upper bound of the nilindex of [A, B].

2. Results

Let $q_A(z) = (z - \lambda_1)^{n_1} \cdots (z - \lambda_t)^{n_t}$ be the minimal polynomial of $A \in$ $L(\mathfrak{X})$. For each $i \in \{1, \ldots, t\}$, let $M_i = \ker (A - \lambda_i)^{n_i}$. Note that $x \in M_i$ if and only if $x \in \ker (A - \lambda_i)^{n_i + \ell}$ for some $\ell \ge 0$.

Lemma 2.1. If $\delta_A^k(B)M_i = \{0\}$, for some $B \in L(X)$ and $k \in \mathbb{N}$, then M_i is invariant for B.

Proof. Since $\delta_A = \delta_{A-\lambda}$, for any $\lambda \in \mathbb{C}$, there is no loss of generality if we assume that $\lambda_1 = 0$ and i = 1.

Let $x \in M_1$, i.e. $A^{n_1}x = 0$. Clearly, vectors $A^{\ell}x$ are in M_1 , for each $\ell \in \{0, 1, \ldots, n_1 - 1\}$. By the assumption, $\delta_A^k(B) A^\ell x = 0$. Thus, with $\ell = n_1 - 1$, we have

(2)
$$0 = \delta_A^k(B)A^{n_1-1}x = \sum_{j=0}^k \binom{k}{j}A^{k-j}BA^{n_1-1+j}x = A^kBA^{n_1-1}x.$$

The equality $\delta^k_A(B)A^{n_1-2}x = 0$ similarly gives

$$A^k B A^{n_1 - 2} x - k A^{k - 1} B A^{n_1 - 1} x = 0.$$

If we multiply this last equality by A and use (2), we get $A^{k+1}BA^{n_1-2}x = 0$. Using induction backwards we are left with $A^{k+n_1}Bx = 0$, which means that $Bx \in M_1.$

Lemma 2.2. If $A \in L(\mathfrak{X})$ is a nilpotent operator with nilindex $n \geq 1$, then the inner derivation δ_A is a nilpotent operator on $L(\mathfrak{X})$ with nilindex 2n-1.

Proof. For a nilpotent operator A with nilindex n, we have

$$\delta_A^{2n-1}(T) = \sum_{j=0}^{2n-1} (-1)^j \binom{2n-1}{j} A^{2n-1-j} T A^j = 0 \qquad (T \in L(\mathfrak{X})).$$

which shows that $(\delta_A)^{2n-1} = 0$.

On the other hand, let $x \in \mathfrak{X}$ and $T \in L(\mathfrak{X})$ be such that $A^{n-1}x \neq 0$ and $TA^{n-1}x = x$. Then

$$\delta_A^{2n-2}(T)x = \sum_{j=0}^{2n-2} (-1)^j \binom{2n-2}{j} A^{2n-2-j} T A^j x$$
$$= (-1)^{n-1} \binom{2n-2}{n-1} A^{n-1} T A^{n-1} x = (-1)^{n-1} \binom{2n-2}{n-1} x \neq 0$$
$$\text{ives } (\delta_A)^{2n-2} \neq 0.$$

gives $(\delta_A)^{\cdot}$ $\neq 0.$

Lemma 2.3. Let $A \in L(\mathfrak{X})$ be a nilpotent operator with nilindex $n \geq 1$ and let $B \in L(\mathfrak{X})$ be such that $\delta_A^2(B) = 0$. Then $(\delta_A(B))^{2n-1} = 0$.

Proof. The classical proof of The Kleinecke-Shirokov Theorem [2, Solution 184] shows that $\delta_A^2(B) = 0$ implies

$$\delta_A^{2n-1}(B^{2n-1}) = (2n-1)!(\delta_A(B))^{2n-1}$$

By Lemma 2.2, δ_A is a nilpotent operator with nilindex 2n - 1. Thus, $(\delta_A(B))^{2n-1} = 0$.

Theorem 2.4. Let $q_A(z) = (z - \lambda_1)^{n_1} \cdots (z - \lambda_t)^{n_t}$ be the minimal polynomial of $A \in L(\mathfrak{X})$. If [A, [A, B]] = 0 for some $B \in L(\mathfrak{X})$, then [A, B] is a nilpotent operator with nilindex at most $m := 2 \cdot \max\{n_1, \ldots, n_t\} - 1$.

Proof. For each $1 \leq i \leq t$, let $M_i := \ker(A - \lambda_i)^{n_i}$. Then $\mathfrak{X} = M_1 \oplus \cdots \oplus M_t$. Since $[A - \lambda_i, [A - \lambda_i, B]] = [A, [A, B]] = 0$ we have $[A - \lambda_i, [A - \lambda_i, B]]M_i = \{0\}$. By Lemma 2.1, M_i is invariant for B, which means that we may consider the restrictions to M_i of the involved operators. The restriction of $A - \lambda_i$ to M_i is a nilpotent operator with nilindex n_i . It follows that the local nilindex of $[A - \lambda_i, B] = [A, B]$ on M_i is at most $2n_i - 1$, by Lemma 2.3. Let $x = x_1 \oplus \cdots \oplus x_t$ be the decomposition of $x \in \mathfrak{X}$ with $x_i \in M_i$. Then, of course, $[A, B]^{2m-1}x = 0$, where $m = \max\{n_1, \ldots, n_t\}$.

Corollary 2.5. If A is a diagonalizable matrix then [A, [A, B]] = 0 implies [A, B] = 0.

Proof. The minimal polynomial of A is a product of distinct linear factors. \Box

References

- J. Bračič, B. Kuzma, Localizations of the Kleinecke-Shirokov Theorem, accepted for publication in *Operators and Matrices*.
- [2] P. R. Halmos, A Hilbert Space Problem Book, Springer, 1974.
- [3] N. Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math. 36 (1935), 875–881.
- [4] I. Kaplansky, Jacobson's Lemma Revisited, Journal of Algebra, 62 (1980), 473-476.

UNIVERSITY OF LJUBLJANA, JADRANSKA UL. 19, SI-1000 LJUBLJANA, SLOVENIA *E-mail address*: janko.bracic@fmf.uni-lj.si