ON THE JACOBSON'S LEMMA

JANKO BRAČIČ

This note is based on the joint work with Bojan Kuzma, [1].

1. Introduction

Let X be a finite dimensional complex vector space. By $L(X)$ we denote the algebra of all linear operators on X.

For $A, B \in L(X)$, let $[A, B]=A B-B A$. The Jacobson's Lemma [3] says that $[A, B]$ is a nilpotent operator if A and $[A, B]$ commute, i.e., if $[A,[A, B]]=0$. The original proof [3, Lemma 2], and its extension [4], bound the nilindex of $[A, B]$ above by $2^{n}-1$, where n is the degree of the minimal polynomial of A. Arguments run as follows.

Denote by $\delta_{B}:=[\cdot, B]$ the inner derivation on $L(X)$ that is induced by B and rewrite the condition $[A,[A, B]]=0$ as $\delta_{B}(A) A=A \delta_{B}(A)$. It follows that

$$
\delta_{B}\left(A^{2}\right)=\delta_{B}(A) A+A \delta_{B}(A)=2 A \delta_{B}(A)
$$

and consequently, by the induction,

$$
\delta_{B}\left(A^{k}\right)=k A^{k-1} \delta_{B}(A) \quad(k \in \mathbb{N}) .
$$

Thus, $\delta_{B}(p(A))=p^{\prime}(A) \delta_{B}(A)$, for any polynomial p.
Let $q_{A}(z)$ be the minimal polynomial of A and let n be its degree. Since $q_{A}(A)=0$ we have $q_{A}^{\prime}(A) \delta_{B}(A)=0$, which is the case $k=1$ of

$$
\begin{equation*}
q_{A}^{(k)}(A) \delta_{B}(A)^{2^{k}-1}=0 . \tag{1}
\end{equation*}
$$

Assume that (1) holds for some $k \in \mathbb{N}$. Then

$$
\begin{aligned}
0= & \delta_{B}\left(q_{A}^{(k)}(A) \delta_{B}(A)^{2^{k}-1}\right) \\
= & q_{A}^{(k+1)}(A) \delta_{B}(A) \delta_{B}(A)^{2^{k}-1}+q_{A}^{(k)}(A) \delta_{B}\left(\delta_{B}(A)^{2^{k}-1}\right) \\
= & q_{A}^{(k+1)}(A) \delta_{B}(A)^{2^{k}}+q_{A}^{(k)}(A) \delta_{B}^{2}(A) \delta_{B}(A)^{2^{k}-2}+ \\
& \quad+q_{A}^{(k)}(A) \delta_{B}(A) \delta_{B}^{2}(A) \delta_{B}(A)^{2^{k}-3}+\cdots+q_{A}^{(k)}(A) \delta_{B}(A)^{2^{k}-2} \delta_{B}^{2}(A) .
\end{aligned}
$$

Now, we premultiply this equality with $\delta_{B}(A)^{2^{k}-1}$ to get the induction step. Thus, $q_{A}^{(k)}(A) \delta_{B}(A)^{2^{k}-1}=0$ holds for any $k \in \mathbb{N}$. In particular, for $k=n$, we have

$$
n!\delta_{B}(A)^{2^{n}-1}=0,
$$

which means that $[A, B]$ is nilpotent with nilindex at most $2^{n}-1$. We remark that if $\delta_{B}^{2}(A)$ commutes with $\delta_{B}(A)$, similar arguments would bound nilindex above by $2 n-1$.

In this note we shall improve the estimate on the upper bound of the nilindex of $[A, B]$.

2. Results

Let $q_{A}(z)=\left(z-\lambda_{1}\right)^{n_{1}} \cdots\left(z-\lambda_{t}\right)^{n_{t}}$ be the minimal polynomial of $A \in$ $L(X)$. For each $i \in\{1, \ldots, t\}$, let $M_{i}=\operatorname{ker}\left(A-\lambda_{i}\right)^{n_{i}}$. Note that $x \in M_{i}$ if and only if $x \in \operatorname{ker}\left(A-\lambda_{i}\right)^{n_{i}+\ell}$ for some $\ell \geq 0$.

Lemma 2.1. If $\delta_{A}^{k}(B) M_{i}=\{0\}$, for some $B \in L(X)$ and $k \in \mathbb{N}$, then M_{i} is invariant for B.

Proof. Since $\delta_{A}=\delta_{A-\lambda}$, for any $\lambda \in \mathbb{C}$, there is no loss of generality if we assume that $\lambda_{1}=0$ and $i=1$.
Let $x \in M_{1}$, i.e. $A^{n_{1}} x=0$. Clearly, vectors $A^{\ell} x$ are in M_{1}, for each $\ell \in\left\{0,1, \ldots, n_{1}-1\right\}$. By the assumption, $\delta_{A}^{k}(B) A^{\ell} x=0$. Thus, with $\ell=n_{1}-1$, we have

$$
\begin{equation*}
0=\delta_{A}^{k}(B) A^{n_{1}-1} x=\sum_{j=0}^{k}\binom{k}{j} A^{k-j} B A^{n_{1}-1+j} x=A^{k} B A^{n_{1}-1} x . \tag{2}
\end{equation*}
$$

The equality $\delta_{A}^{k}(B) A^{n_{1}-2} x=0$ similarly gives

$$
A^{k} B A^{n_{1}-2} x-k A^{k-1} B A^{n_{1}-1} x=0
$$

If we multiply this last equality by A and use (2), we get $A^{k+1} B A^{n_{1}-2} x=0$. Using induction backwards we are left with $A^{k+n_{1}} B x=0$, which means that $B x \in M_{1}$.

Lemma 2.2. If $A \in L(X)$ is a nilpotent operator with nilindex $n \geq 1$, then the inner derivation δ_{A} is a nilpotent operator on $L(X)$ with nilindex $2 n-1$.

Proof. For a nilpotent operator A with nilindex n, we have

$$
\delta_{A}^{2 n-1}(T)=\sum_{j=0}^{2 n-1}(-1)^{j}\binom{2 n-1}{j} A^{2 n-1-j} T A^{j}=0 \quad(T \in L(X)),
$$

which shows that $\left(\delta_{A}\right)^{2 n-1}=0$.
On the other hand, let $x \in X$ and $T \in L(X)$ be such that $A^{n-1} x \neq 0$ and $T A^{n-1} x=x$. Then

$$
\begin{aligned}
\delta_{A}^{2 n-2}(T) x & =\sum_{j=0}^{2 n-2}(-1)^{j}\binom{2 n-2}{j} A^{2 n-2-j} T A^{j} x \\
& =(-1)^{n-1}\binom{2 n-2}{n-1} A^{n-1} T A^{n-1} x=(-1)^{n-1}\binom{2 n-2}{n-1} x \neq 0
\end{aligned}
$$

gives $\left(\delta_{A}\right)^{2 n-2} \neq 0$.
Lemma 2.3. Let $A \in L(X)$ be a nilpotent operator with nilindex $n \geq 1$ and let $B \in L(X)$ be such that $\delta_{A}^{2}(B)=0$. Then $\left(\delta_{A}(B)\right)^{2 n-1}=0$.

Proof. The classical proof of The Kleinecke-Shirokov Theorem [2, Solution 184] shows that $\delta_{A}^{2}(B)=0$ implies

$$
\delta_{A}^{2 n-1}\left(B^{2 n-1}\right)=(2 n-1)!\left(\delta_{A}(B)\right)^{2 n-1}
$$

By Lemma 2.2, δ_{A} is a nilpotent operator with nilindex $2 n-1$. Thus, $\left(\delta_{A}(B)\right)^{2 n-1}=0$.

Theorem 2.4. Let $q_{A}(z)=\left(z-\lambda_{1}\right)^{n_{1}} \cdots\left(z-\lambda_{t}\right)^{n_{t}}$ be the minimal polynomial of $A \in L(X)$. If $[A,[A, B]]=0$ for some $B \in L(X)$, then $[A, B]$ is a nilpotent operator with nilindex at most $m:=2 \cdot \max \left\{n_{1}, \ldots, n_{t}\right\}-1$.

Proof. For each $1 \leq i \leq t$, let $M_{i}:=\operatorname{ker}\left(A-\lambda_{i}\right)^{n_{i}}$. Then $\mathcal{X}=M_{1} \oplus \cdots \oplus M_{t}$. Since $\left[A-\lambda_{i},\left[A-\lambda_{i}, B\right]\right]=[A,[A, B]]=0$ we have $\left[A-\lambda_{i},\left[A-\lambda_{i}, B\right]\right] M_{i}=$ $\{0\}$. By Lemma 2.1, M_{i} is invariant for B, which means that we may consider the restrictions to M_{i} of the involved operators. The restriction of $A-\lambda_{i}$ to M_{i} is a nilpotent operator with nilindex n_{i}. It follows that the local nilindex of $\left[A-\lambda_{i}, B\right]=[A, B]$ on M_{i} is at most $2 n_{i}-1$, by Lemma 2.3. Let $x=x_{1} \oplus \cdots \oplus x_{t}$ be the decomposition of $x \in X$ with $x_{i} \in M_{i}$. Then, of course, $[A, B]^{2 m-1} x=0$, where $m=\max \left\{n_{1}, \ldots, n_{t}\right\}$.

Corollary 2.5. If A is a diagonalizable matrix then $[A,[A, B]]=0$ implies $[A, B]=0$.

Proof. The minimal polynomial of A is a product of distinct linear factors.

References

[1] J. Bračič, B. Kuzma, Localizations of the Kleinecke-Shirokov Theorem, accepted for publication in Operators and Matrices.
[2] P. R. Halmos, A Hilbert Space Problem Book, Springer, 1974.
[3] N. Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math. 36 (1935), 875-881.
[4] I. Kaplansky, Jacobson's Lemma Revisited, Journal of Algebra, 62 (1980), 473-476.

